Of the 22 species currently recognized as valid in the Cryptosporidium genus, C. parvum and C. hominis account for most cases of human infections worldwide. However, C. meleagridis, C. canis, C. felis, C. suis, C. muris, as well as the cervine, rabbit and monkey Cryptosporidium genotypes, have also been recognized as the etiologic cause of both sporadic and epidemic cryptosporidiosis in humans. Molecular methods are necessary to distinguish species and genotypes of Cryptosporidium, due to the lack of reliable morphological variations. The aim of this work was to determine the genetic polymorphisms in a fragment of the A135 gene in isolates of C. parvum, C. hominis, C. meleagridis, C. canis, C. muris, C. andersoni and the Cryptosporidium cervine genotype. Primers were designed on conserved regions identified on a multiple alignment of the C. parvum, C. hominis and C. muris sequences, the three species for which information is available at the genome level. PCR amplification and direct sequencing of a 576 bp fragment revealed the presence of numerous single nucleotide polymorphisms (SNPs) among the species/genotype tested. The genetic variability was exploited to design a PCR-RFLP assay useful for a rapid identification of the most important human pathogens in the genus Cryptosporidium.
Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.