Synaptic organizing complexes

Curr Opin Neurobiol. 2011 Feb;21(1):132-43. doi: 10.1016/j.conb.2010.08.016. Epub 2010 Sep 9.

Abstract

A number of synaptogenic factors induce presynaptic or postsynaptic differentiation when presented to axons or dendrites. Many such factors participate in bidirectional trans-synaptic adhesion complexes. Axonal neurexins interacting in an isoform-specific code with multiple dendritic partners (neuroligins, LRRTMs, or Cbln-GluRδ), and axonal protein tyrosine phosphatase receptors interacting with dendritic NGL-3, nucleate local networks of high-affinity protein-protein interactions leading to aligned presynaptic and postsynaptic differentiation. Additional secreted target-derived factors such as fibroblast growth factors and glial-derived factors such as thrombospondin bind specific axonal or dendritic receptors stimulating signal transduction mechanisms to promote selective aspects of synapse development. Together with classical adhesion molecules and controlled by transcriptional cascades, these synaptogenic adhesion complexes and secreted factors organize the molecular composition and thus functional properties of central synapses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Axons / metabolism
  • Axons / ultrastructure
  • Dendrites / metabolism
  • Dendrites / ultrastructure
  • Humans
  • Neural Cell Adhesion Molecules / metabolism*
  • Synapses / metabolism*
  • Synapses / ultrastructure*
  • Transcription Factors / metabolism

Substances

  • Neural Cell Adhesion Molecules
  • Transcription Factors