Alternative splicing (AS) has emerged as a key mechanism that accounts for gene expression diversity in metazoan organisms. Splicing is tightly regulated by a repertoire of RNA and protein factors and RNA sequence elements that function in a cooperative manner. Systems-level experimental and computational approaches have been instrumental in establishing comprehensive profiles of transcript variants generated by AS. In addition, systems biology approaches are starting to define how combinatorial splicing regulation shapes the complex splicing phenotypes observed in different tissue types and developmental stages and under different conditions. Here, we review recent progress in these areas.