The default network and processing of personally relevant information: converging evidence from task-related modulations and functional connectivity

Neuropsychologia. 2010 Nov;48(13):3815-23. doi: 10.1016/j.neuropsychologia.2010.09.007. Epub 2010 Sep 15.

Abstract

Despite a growing interest in the default network (DN), its composition and function are not fully known. Here we examined whether the DN, as a whole, is specifically active during a task involving judgments about the self, or whether this engagement extends to judgments about a close other. We also aimed to provide converging evidence of DN involvement from across-task functional connectivity, and resting-state functional connectivity analyses, to provide a more comprehensive delineation of this network. Using functional MRI we measured brain activity in young adults during tasks and rest, and utilized a multivariate method to assess task-related changes as well as functional connectivity. An overlapping set of regions showed increased activity for judgments about the self, and about a close other, and strong functional connectivity with the posterior cingulate, a critical node of the DN. These areas included ventromedial prefrontal cortex, posterior parietal cortex, and medial temporal regions, all thought to be part of the DN. Several additional regions, such as the left inferior frontal gyrus and bilateral caudate, also showed the same pattern of activity and connectivity. These results provide evidence that the default network, as an integrated whole, supports internally oriented cognition involving information that is personally relevant, but not limited specifically to the self. They also suggest that the DN may be somewhat more extensive than currently thought.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Analysis of Variance
  • Brain / physiology*
  • Brain Mapping
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Multivariate Analysis
  • Nerve Net / physiology*
  • Reaction Time / physiology