A novel mesoporous-coated stainless steel wire microextraction coupled with the HPLC procedure for quantification of four polycyclic aromatic hydrocarbons in water has been developed, based on the sorption of target analytes on a selectively adsorptive fiber and subsequent desorption of analytes directly into HPLC. Phenyl-functionalized mesoporous materials (Ph-SBA-15) were synthesized and coated on the surfaces of a stainless steel wire. Due to the high porosity and large surface area of the Ph-SBA-15, high extraction efficiency is expected. The influence of various parameters on polycyclic aromatic hydrocarbons extraction efficiency were thoroughly studied and optimized (such as the extraction temperature, the extraction time, the desorption time, the stirring rate and the ionic strength of samples). The results showed that each compound for the analysis of real water samples was tested under optimal conditions with the linearity ranging from 1.02×10(-3) to 200 μg/ L and the detection limits were found from 0.32 to 2.44 ng/ L, respectively. The RSD of the new method was smaller than 4.10%.