Background: Glycodelin-A interacts with spermatozoa before fertilization, but its role in modulating sperm functions is not known. Zona pellucida-induced acrosome reaction is crucial to fertilization and its dysfunction is a cause of male infertility. We hypothesized that glycodelin-A, a glycoprotein found in the female reproductive tract, potentiates human spermatozoa for zona pellucida-induced acrosome reaction.
Methods: Glycodelin isoforms were immunoaffinity purified. The sperm intracellular cAMP concentration, protein kinase-A (PKA) and extracellular signal-regulated kinase (ERK) activities, and intracellular calcium were measured by ELISA, kinase activity assay kits and Fluo-4AM technique, respectively. The phosphorylation of inositol 1,4,5-trisphosphate type-1 receptor (IP3R1) mediated by ERK was determined by western blotting. Zona pellucida-induced acrosome reaction was detected by Pisum sativum staining.
Results: Pretreatment of spermatozoa with glycodelin-A significantly up-regulated adenylyl cyclase/PKA activity and down-regulated the activity of ERK and its phosphorylation of IP3R1, thereby enhancing zona pellucida-induced calcium influx and zona pellucida-induced acrosome reaction. Glycodelin-F or deglycosylated glycodelin-A did not have these actions. Treatment of spermatozoa with a protein kinase inhibitor abolished the priming activity of glycodelin-A, whilst ERK pathway inhibitors mimic the stimulatory effect of glycodelin-A on zona pellucida-induced acrosome reaction.
Conclusions: Glycodelin-A in the female reproductive tract sensitizes spermatozoa for zona pellucida-induced acrosome reaction in a glycosylation-specific manner through activation of the adenylyl cyclase/PKA pathway, suppression of extracellular signal-regulated kinase activation and up-regulation of zona pellucida-induced calcium influx. The action of glycodelin-A may be important in vivo to ensure full responsiveness of human spermatozoa to the zona pellucida.