Control of the optical properties of a star copolymer with a hyperbranched conjugated polymer core and poly(ethylene glycol) arms by self-assembly

Chemistry. 2010 Nov 8;16(42):12710-7. doi: 10.1002/chem.201001084.

Abstract

A self-assembly approach to tuning the optical properties of a star copolymer is reported herein. The star copolymer HCP-star-PEG with a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms has been prepared successfully. The HCP core was synthesized by Wittig coupling of N-(n-hexyl)-3,6-diformylcarbazole and 1,3,5-bis[(triphenylphosphonio)methyl]benzene tribromide. Subsequently, the linear PEG arms were grafted onto the HCP core by acylhydrazone connection. It was found that the optical properties of HCP-star-PEG in chloroform solution changed on addition of acid. Both (1)H NMR and UV/Vis spectroscopic investigations confirmed that the variation of the optical properties was related to the complexation of the acid and the imine bond in the acylhydrazone group. HCP-star-PEG self-assembled into core-shell micelles in the mixed solvent of chloroform and acetonitrile, which affected the protonation of the imine bond. Therefore the optical properties of HCP-star-PEG can be readily controlled by self-assembly.