Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats

J Mol Cell Cardiol. 2010 Dec;49(6):941-9. doi: 10.1016/j.yjmcc.2010.09.008. Epub 2010 Sep 18.

Abstract

Previous studies indicated that, in an acute myocardial infarction model, human embryonic stem cell-derived cardiomyocytes (hESC-CM) injected with a pro-survival cocktail (PSC) can preserve contractile function. Because patients with established heart failure may also benefit from cell transplantation, we evaluated the physiological effects of hESC-CM transplanted into a chronic model of myocardial infarction. Intramyocardial injection of hESC-CM with PSC was performed in nude rats at 1 month following ischemia-reperfusion. The left ventricular function of hESC-CM injected rats was evaluated at 1, 2 and 3 months after the cell injection procedure and was compared to 3 control groups (rats injected with serum-free media, PSC only, or non-cardiac human cells in PSC). Histology at 3 months revealed that human cardiomyocytes survive, develop increased sarcomere organization and are still proliferating. Despite successful engraftment, both echocardiography and MRI analyses showed no significant difference in left ventricular structure or function between these 4 groups at any time point of the study, suggesting that human cardiomyocytes do not affect cardiac remodeling in a rat model of chronic myocardial infarction. When injected into a chronic infarct model, hESC-CM can engraft, survive and form grafts with striated cardiomyocytes at least as well as was previously observed in an acute myocardial infarction model. However, although hESC-CM transplantation can attenuate the progression of heart failure in an acute model, the same hESC-CM injection protocol is insufficient to restore heart function or to alter adverse remodeling of a chronic myocardial infarction model.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / metabolism
  • Humans
  • Injections
  • Magnetic Resonance Imaging
  • Male
  • Myocardial Infarction / diagnostic imaging
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology*
  • Myocardial Infarction / therapy
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / transplantation*
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cell Transplantation*
  • Ultrasonography
  • Ventricular Remodeling / physiology*