Potentiation of ligand binding through cooperative effects in monoamine oxidase B

J Biol Chem. 2010 Nov 19;285(47):36849-56. doi: 10.1074/jbc.M110.169482. Epub 2010 Sep 20.

Abstract

Crystallographic and biochemical studies have been employed to identify the binding site and mechanism for potentiation of imidazoline binding in human monoamine oxidase B (MAO B). 2-(2-Benzofuranyl)-2-imidazoline (2-BFI) inhibits recombinant human MAO B with a K(i) of 8.3 ± 0.6 μM, whereas tranylcypromine-inhibited MAO B binds 2-BFI with a K(d) of 9 ± 2 nM, representing an increase in binding energy Δ(ΔG) of -3.9 kcal/mol. Crystal structures show the imidazoline ligand bound in a site that is distinct from the substrate-binding cavity. Contributions to account for the increase in binding affinity upon tranylcypromine inhibition include a conformational change in the side chain of Gln(206) and a "closed conformation" of the side chain of Ile(199), forming a hydrophobic "sandwich" with the side chain of Ile(316) on each face of the benzofuran ring of 2-BFI. Data with the I199A mutant of human MAO B and failure to observe a similar binding potentiation with rat MAO B, where Ile(316) is replaced with a Val residue, support an allosteric mechanism where the increased binding affinity of 2-BFI results from a cooperative increase in H-bond strength through formation of a more hydrophobic milieu. These insights should prove valuable in the design of high affinity and specific reversible MAO B inhibitors.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Benzofurans / metabolism*
  • Binding Sites
  • Binding, Competitive
  • Crystallography, X-Ray
  • Humans
  • Imidazoles / metabolism*
  • Monoamine Oxidase / chemistry*
  • Monoamine Oxidase / genetics
  • Monoamine Oxidase / metabolism*
  • Monoamine Oxidase Inhibitors / pharmacology
  • Mutagenesis, Site-Directed
  • Protein Binding
  • Protein Conformation
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism*
  • Tranylcypromine / pharmacology

Substances

  • Benzofurans
  • Imidazoles
  • Monoamine Oxidase Inhibitors
  • Recombinant Proteins
  • Tranylcypromine
  • 2-(2-benzofuranyl)-2-imidazoline
  • Monoamine Oxidase

Associated data

  • PDB/2XCG
  • PDB/2XFN
  • PDB/2XFO
  • PDB/2XFP
  • PDB/2XFQ
  • PDB/2XFU