Background: Pancreatic stellate cells (PSC) play a central role in fibrogenesis associated with acute and chronic pancreatitis. Pancreatic stone protein/regenerating protein (PSP/reg) belongs to a family of secretory stress proteins (SSP) that are constitutively synthesized by pancreatic acinar cells and upregulated dramatically during acute and chronic pancreatitis. Assuming a protective role of this stress protein, we investigated its effects on human PSC.
Material and methods: Pancreatic stellate cells were obtained by outgrowth from fibrotic human pancreas tissue. PSP/reg was expressed in the yeast Pichia pastoris and purified from medium supernatants. PSP/reg was added at concentrations of 100 ng/mL to cultured PSC. Cell proliferation was determined by bromodeoxyuridine incorporation. PSC migration was assessed by a wound healing assay. Extracellular matrix (collagen type I and fibronectin), matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) were demonstrated on protein level.
Results: Pancreatic stone protein/regenerating protein inhibited PSC proliferation and migration. Soluble collagen I and fibronectin were reduced after the addition of PSP/reg. PSP/reg slightly decreased the synthesis of MMP-1 and MMP-2 and strongly decreased TIMP-1 and TIMP-2 concentrations in PSC supernatants.
Conclusions: Our work describes a novel aspect that in vitro PSP/reg reduces PSC activity (proliferation and migration) and stimulates fibrolysis by increasing MMP/TIMP ratio. The findings suggest that PSP/reg might have a protective function in the repair phase of acute and chronic pancreatitis by promoting resolution of fibrosis. We highlight PSP/reg as an antifibrogenic protein in pancreatic injury.
© 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.