We have developed an effective pathway for the prediction and characterization of novel transmembrane β-barrel proteins. The Freeman-Wimley algorithm, which is a highly accurate prediction method based on the physicochemical properties of experimentally characterized transmembrane β barrel (TMBB) structures, was used to predict TMBBs in the genome of Salmonella typhimurium LT2. The previously uncharacterized product of gene yshA was tested as a model for validating the algorithm. YshA is a highly conserved 230-residue protein that is predicted to have 10 transmembrane β-strands and an N-terminal signal sequence. All of the physicochemical and spectroscopic properties exhibited by YshA are consistent with the prediction that it is a TMBB. Specifically, recombinant YshA localizes to the outer membrane when expressed in Escherichia coli; YshA has a β-sheet-rich secondary structure with stable tertiary contacts in the presence of detergent micelles or when reconstituted into a lipid bilayer. When in a lipid bilayer, YshA forms a membrane-spanning pore with an effective radius of ~0.7nm. Taken together, these data substantiate the predictions made by the Freeman-Wimley algorithm by showing that YshA is a TMBB protein.
Copyright © 2010 Elsevier B.V. All rights reserved.