Josephson junction simulation of neurons

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011914. doi: 10.1103/PhysRevE.82.011914. Epub 2010 Jul 19.

Abstract

With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present superconducting circuits containing Josephson junctions that model biologically realistic neurons. These "Josephson junction neurons" reproduce many characteristic behaviors of biological neurons such as action potentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical and chemical synapses. Using existing fabrication technologies, large interconnected networks of Josephson junction neurons would operate fully in parallel. They would be orders of magnitude faster than both traditional computer simulations and biological neural networks. Josephson junction neurons provide a new tool for exploring long-term large-scale dynamics for networks of neurons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Computer Simulation
  • Humans
  • Models, Neurological*
  • Nerve Net / physiology*
  • Neurons / physiology*
  • Synaptic Transmission / physiology*