High melting points of tantalum in a laser-heated diamond anvil cell

Phys Rev Lett. 2010 Jun 25;104(25):255701. doi: 10.1103/PhysRevLett.104.255701. Epub 2010 Jun 21.

Abstract

In situ x-ray diffraction has been used to characterize the structural modifications of tantalum samples under intense laser irradiation, up to 135 GPa in a diamond anvil cell. Melting data points are obtained that do not confirm the previously reported anomalously low melting curve. Two effects are identified that might alter the melting determination of refractory metals such as Ta under high static pressures. First, a strong chemical reactivity of Ta with the pressure transmitting media and with carbon diffusing out from the surface of the anvils is observed. Second, pyrometry measurements can be distorted when the pressure medium melts. The strong divergence between ab initio calculations, shock measurements and static determination is resolved here and hence many theoretical interpretations are ruled out. Finally, the body-centered cubic phase is stable over the pressure-temperature range investigated.