Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (-/-) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ -/- pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.