High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability

J Physiol. 2010 Dec 1;588(Pt 23):4837-47. doi: 10.1113/jphysiol.2010.194704. Epub 2010 Sep 27.

Abstract

High altitude (HA)-induced pulmonary hypertension may be due to a free radical-mediated reduction in pulmonary nitric oxide (NO) bioavailability. We hypothesised that the increase in pulmonary artery systolic pressure (PASP) at HA would be associated with a net transpulmonary output of free radicals and corresponding loss of bioactive NO metabolites. Twenty-six mountaineers provided central venous and radial arterial samples at low altitude (LA) and following active ascent to 4559 m (HA). PASP was determined by Doppler echocardiography, pulmonary blood flow by inert gas re-breathing, and vasoactive exchange via the Fick principle. Acute mountain sickness (AMS) and high-altitude pulmonary oedema (HAPE) were diagnosed using clinical questionnaires and chest radiography. Electron paramagnetic resonance spectroscopy, ozone-based chemiluminescence and ELISA were employed for plasma detection of the ascorbate free radical (A(·-)), NO metabolites and 3-nitrotyrosine (3-NT). Fourteen subjects were diagnosed with AMS and three of four HAPE-susceptible subjects developed HAPE. Ascent decreased the arterio-central venous concentration difference (a-cv(D)) resulting in a net transpulmonary loss of ascorbate, α-tocopherol and bioactive NO metabolites (P < 0.05 vs. LA). This was accompanied by an increased a-cv(D) and net output of A(·-) and lipid hydroperoxides (P < 0.05 vs. sea level, SL) that correlated against the rise in PASP (r = 0.56-0.62, P < 0.05) and arterial 3-NT (r = 0.48-0.63, P < 0.05) that was more pronounced in HAPE. These findings suggest that increased PASP and vascular resistance observed at HA are associated with a free radical-mediated reduction in pulmonary NO bioavailability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Altitude Sickness / drug therapy
  • Altitude Sickness / physiopathology
  • Antihypertensive Agents / therapeutic use
  • Female
  • Free Radicals / chemistry
  • Free Radicals / metabolism*
  • Hemodynamics
  • Humans
  • Hypertension, Pulmonary / drug therapy
  • Hypertension, Pulmonary / physiopathology
  • Lung / physiology*
  • Male
  • Middle Aged
  • Molecular Structure
  • Nifedipine / therapeutic use
  • Nitric Oxide / metabolism*
  • Oxidative Stress / physiology
  • Oxygen / therapeutic use
  • Pulmonary Gas Exchange / physiology

Substances

  • Antihypertensive Agents
  • Free Radicals
  • Nitric Oxide
  • Nifedipine
  • Oxygen

Supplementary concepts

  • Pulmonary edema of mountaineers