Type I interferons (IFN-α/β) control viral infection by triggering the expression of genes that restrict transcription, translation, replication, and assembly. Many viruses induce IFN responses after recognition by cytoplasmic or endosomal RNA sensors (RIG-I-like RNA helicases [RLR] and Toll-like receptors [TLR]), which signal through the cognate adaptor signaling molecules IPS-1, TRIF, and MyD88. Recent studies have demonstrated that IPS-1-dependent induction of IFN-α/β downstream of RLR recognition restricts West Nile virus (WNV) infection in many cell types, whereas TRIF-dependent TLR3 signaling limits WNV replication in neurons. Here, we examined the contribution of MyD88 signaling to the control of WNV by evaluating IFN induction and virus replication in genetically deficient cells and mice. MyD88(-/-) mice showed increased lethality after WNV infection and elevated viral burden primarily in the brain, even though little effect on the systemic type I IFN response was observed. Intracranial inoculation studies corroborated these findings, as WNV spread more rapidly in the central nervous system of MyD88(-/-) mice, and this phenotype preceded the recruitment of inflammatory leukocytes. In vitro, increased WNV replication was observed in MyD88(-/-) macrophages and subsets of neurons but not in myeloid dendritic cells. MyD88 had an independent effect on recruitment of monocyte-derived macrophages and T cells into the brain that was associated with blunted induction of the chemokines that attract leukocytes. Our experiments suggest that MyD88 restricts WNV by inhibiting replication in subsets of cells and modulating expression of chemokines that regulate immune cell migration into the central nervous system.