Light-induced chemical reactions exist in nature, regulating many important cellular and organismal functions, e.g., photosensing in prokaryotes and vision formation in mammals. Here, we report the genetic incorporation of a photoreactive unnatural amino acid, p-(2-tetrazole)phenylalanine (p-Tpa), into myoglobin site-specifically in E. coli by evolving an orthogonal tRNA/aminoacyl-tRNA synthetase pair and the use of p-Tpa as a bioorthogonal chemical "handle" for fluorescent labeling of p-Tpa-encoded myoglobin via the photoclick reaction. Moreover, we elucidated the structural basis for the biosynthetic incorporation of p-Tpa into proteins by solving the X-ray structure of p-Tpa-specific aminoacyl-tRNA synthetase in complex with p-Tpa. The genetic encoding of this photoreactive amino acid should make it possible in the future to photoregulate protein function in living systems.