Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidize targets in a biologic system. During steady-state conditions, ROS are constantly produced in the electron-transport chain during cellular respiration and by various constitutively active oxidases. ROS production can also be induced by activation of the phagocyte NADPH oxidase 2 (NOX2) complex in a process generally referred to as an oxidative burst. The induced ROS have long been considered proinflammatory, causing cell and tissue destruction. Recent findings have challenged this inflammatory role of ROS, and today, ROS are also known to regulate immune responses and cell proliferation and to determine T-cell autoreactivity. NOX2-derived ROS have been shown to suppress antigen-dependent T-cell reactivity and remarkably to reduce the severity of experimental arthritis in both rats and mice. In this review, we discuss the role of ROS and the NOX2 complex as suppressors of autoimmunity, inflammation, and arthritis.