Phosphodiesterases catalyze hydrolysis of cAMP-bound to regulatory subunit of protein kinase A and mediate signal termination

Mol Cell Proteomics. 2011 Feb;10(2):M110.002295. doi: 10.1074/mcp.M110.002295. Epub 2010 Oct 5.

Abstract

Although extensive structural and biochemical studies have provided molecular insights into the mechanism of cAMP-dependent activation of protein kinase A (PKA), little is known about signal termination and the role of phosphodiesterases (PDEs) in regulatory feedback. In this study we describe a novel mode of protein kinase A-anchoring protein (AKAP)-independent feedback regulation between a specific PDE, RegA and the PKA regulatory (RIα) subunit, where RIα functions as an activator of PDE catalysis. Our results indicate that RegA, in addition to its well-known role as a PDE for bulk cAMP in solution, is also capable of hydrolyzing cAMP-bound to RIα. Furthermore our results indicate that binding of RIα activates PDE catalysis several fold demonstrating a dual function of RIα, both as an inhibitor of the PKA catalytic (C) subunit and as an activator for PDEs. Deletion mutagenesis has localized the sites of interaction to one of the cAMP-binding domains of RIα and the catalytic PDE domain of RegA whereas amide hydrogen/deuterium exchange mass spectrometry has revealed that the cAMP-binding site (phosphate binding cassette) along with proximal regions important for relaying allosteric changes mediated by cAMP, are important for interactions with the PDE catalytic domain of RegA. These sites of interactions together with measurements of cAMP dissociation rates demonstrate that binding of RegA facilitates dissociation of cAMP followed by hydrolysis of the released cAMP to 5'AMP. cAMP-free RIα generated as an end product remains bound to RegA. The PKA C-subunit then displaces RegA and reassociates with cAMP-free RIα to regenerate the inactive PKA holoenzyme thereby completing the termination step of cAMP signaling. These results reveal a novel mode of regulatory feedback between PDEs and RIα that has important consequences for PKA regulation and cAMP signal termination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Bacterial Proteins / chemistry*
  • Catalytic Domain
  • Cattle
  • Cyclic AMP / metabolism*
  • Cyclic AMP-Dependent Protein Kinases / chemistry*
  • Kinetics
  • Mass Spectrometry / methods
  • Mice
  • Molecular Conformation
  • Molecular Sequence Data
  • Mutagenesis
  • Spectrometry, Fluorescence / methods

Substances

  • Bacterial Proteins
  • RegA protein, Bacteria
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases