Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress

Mol Plant. 2011 Jan;4(1):25-41. doi: 10.1093/mp/ssq056. Epub 2010 Oct 5.

Abstract

Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, a salt-sensitive cultivar, transcript levels were compared in roots of these two accessions as well as in the roots of two additional salt-tolerant indica genotypes, the landrace Pokkali and the recombinant inbred line IR63731. The aim of this study was to compare transcripts in the sensitive and the tolerant lines in order to identify genes likely to be involved in plant salinity tolerance, rather than in responses to salinity per se. Transcript profiles of several gene families with known links to salinity tolerance are described (e.g. HKTs, NHXs). The putative function of a set of genes identified through their salt responsiveness, transcript levels, and/or chromosomal location (i.e. underneath QTLs for salinity tolerance) is also discussed. Finally, the parental origin of the Saltol region in FL478 is further investigated. Overall, the dataset presented appears to be robust and it seems likely that this system could provide a reliable strategy for the discovery of novel genes involved in salinity tolerance.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Profiling*
  • Gene Expression Regulation, Plant
  • Genotype
  • Organ Specificity
  • Oryza / genetics*
  • Oryza / physiology
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Roots / genetics*
  • Plant Roots / physiology
  • Salt Tolerance*
  • Sodium Chloride / metabolism

Substances

  • Plant Proteins
  • Sodium Chloride