Angiotensin II (AngII) stimulates vascular smooth muscle cell (VSMC) proliferation; however, the effect of AngII on cell proliferation in the presence of mechanical force is not clear. We investigated the mechanism of AngII-induced cell proliferation mediated by mechanical stretch in VSMCs of both normotensive and hypertensive rats. VSMCs obtained from the thoracic aortas of 8-week-old Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were stretched by a Flex culture system. Mechanical stretch significantly upregulated protein expression of AngII type 1 (AT₁) receptor, epidermal growth factor (EGF) receptor and mitogen-activated protein kinase phosphatase-1 in both SHR and WKY VSMCs; however, there was no significant difference in these changes between the cells from SHR and WKY. Mechanical stretch attenuated AngII-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, ERK kinase (MEK) and EGF receptor; it also attenuated [³H] thymidine incorporation and cell proliferation in VSMC of WKY. In contrast, the effects of AngII were augmented by mechanical stretch in VSMC of SHR. AngII-induced ERK 1/2 phosphorylation and cell proliferation in SHR were inhibited by pretreatment with an AT₁ receptor blocker, candesartan and an inhibitor of MEK, PD98059. Moreover, pretreatment with an EGF receptor tyrosine kinase inhibitor, AG1478, also blocked upregulation of AngII-induced ERK 1/2 phosphorylation induced by stretch in SHR VSMCs. This study demonstrates that mechanical stretch augments SHR VSMC proliferation through an AT₁/EGF receptor/ERK-dependent pathway. These findings may provide new insights into the signaling mechanisms whereby AngII exerts its growth-promoting effects on vasculature in a hypertensive state.