The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED. In poly(9-vinyl-carbazole) (PVK) based EL, a high processing temperature (60 °C) yielded less nanoscale phase separation than a low processing temperature (30 °C). This nanostructure can be further suppressed by replacing the host polymer with poly[oxy(3-(9H-9-carbazol-9-ilmethyl-2-methyltrimethylene)] (SL74) and poly[3-(carbazol-9-ylmethyl)-3-methyloxetane] (RS12), which have similar chemical structures and energy levels as PVK. The device efficiency increases when the phase separation inside the EL is suppressed. While the spontaneous formation of a bicontinuous nanostructure inside the active layer is known to provide a path for charge carrier transportation and to be the key to highly efficient polymeric solar cells, these nanostructures are less efficient for trapping the carrier inside the EL and thus lower the power conversion efficiency of the PLED devices.