The interest in nanosuspensions by the pharmaceutical industry is increasing given several nanosuspension products currently on the market for poorly soluble drugs. In this study, a novel dosage form for curcumin (CUR), CUR nanosuspension (CUR-NS), was successfully prepared by high pressure homogenization to improve CUR's cytotoxicity, as well as improve its application via intravenous injection. Characterization of the CUR-NS was evaluated by morphology, size, zeta potential, solubility, dissolution rate, and crystal state of drug. The nanoparticles for CUR-NS presented a sphere-like shape under transmission electron microscopy with an average diameter of 250.6 nm and the zeta potential of CUR-NS was -27.92 mV. Solubility and dissolution rate of CUR in the form of CUR-NS were significantly increased due to the small particle size and the crystalline state of CUR was preserved to increase its stability against degradation. Superior cytotoxicity in Hela and MCF-7 cells was obtained for CUR-NS compared with CUR solution. The safety evaluation showed that, compared with the CUR solution, CUR-NS provided less local irritation and phlebitis risks, lower rate of erythrocyte hemolysis. These findings suggest that CUR-NS may represent a promising new drug formulation for intravenous administration in the treatment of certain cancers.