Epigenetic modifications work in concert with genetic mechanisms to regulate transcriptional activity in normal tissues and are often dysregulated in disease. Although they are somatically heritable, modifications of DNA and histones are also reversible, making them good targets for therapeutic intervention. Epigenetic changes often precede disease pathology, making them valuable diagnostic indicators for disease risk or prognostic indicators for disease progression. Several inhibitors of histone deacetylation or DNA methylation are approved for hematological malignancies by the US Food and Drug Administration and have been in clinical use for several years. More recently, histone methylation and microRNA expression have gained attention as potential therapeutic targets. The presence of multiple epigenetic aberrations within malignant tissue and the abilities of cells to develop resistance suggest that epigenetic therapies are most beneficial when combined with other anticancer strategies, such as signal transduction inhibitors or cytotoxic treatments. A key challenge for future epigenetic therapies will be to develop inhibitors with specificity to particular regions of chromosomes, thereby potentially reducing side effects.