Objective: The pathogenesis of non-alcoholic steatohepatitis is still unclear. We have demonstrated previously that peroxisome proliferator activated receptor gamma (PPARγ) ligand protects against inflammation and fibrogenesis in experimental non-alcoholic steatohepatitis. We aim to elucidate the effect and the mechanism of PPARγ itself on nutritional fibrotic steatohepatitis in mice.
Methods: C57BL/6J mice were fed with methionine-choline deficient (MCD) diet for 8 weeks to induce fibrotic steatohepatitis. Mice fed the MCD diet were treated with adenovirus carrying PPARγ (Ad-PPARγ), Ad-PPARγ plus PPARγ agonist rosiglitazone, or PPARγ antagonist 2-chloro-5-nitrobenzaniliden (GW9662), respectively. The effects of up-regulation of PPARγ in the presence or absence of its agonist/or antagonist were assessed by comparing the severity of hepatic injury, activation of hepatic stellate cells and the expression of adiponectin, heme oxygenase-1, and fibrogenic related genes.
Results: Mice fed with MCD diet for 8 weeks showed severe hepatic injury including hepatic steatosis, inflammatory infiltration, and fibrosis. Administration of Ad-PPARγ significantly lowered serum alanine aminotransferase level and ameliorated hepatic steatosis, necroinflammation, and fibrosis. These effects were associated with enhanced expression of PPARγ, up-regulated expression of adiponectin and heme oxygenase-1, and down-regulated expression of tumor necrosis factor alpha, interleukin-6, α-smooth muscle actin, transforming growth factor beta 1, matrix metallopeptidase-2, and -9. Administration of GW9662 promoted the severity of liver histology.
Conclusions: The present study provided evidences for the protective role of overexpressing PPARγ in ameliorating hepatic fibrosing steatohepatitis in mice. Modulation of PPARγ expression might serve as a therapeutic approach for fibrotic steatohepatitis.