Accurate neural crest cell (NCC) migration requires tight control of cell adhesions, cytoskeletal dynamics and cell motility. Cadherins and RhoGTPases are critical molecular players that regulate adhesions and motility during initial delamination of NCCs from the neuroepithelium. Recent studies have revealed multiple functions for these molecules and suggest that a precise balance of their activity is crucial. RhoGTPase appears to regulate both cell adhesions and protrusive forces during NCC delamination. Increasing evidence shows that cadherins are multi-functional proteins with novel, adhesion-independent signaling functions that control NCC motility during both delamination and migration. These functions are often regulated by specific proteolytic cleavage of cadherins. After NCC delamination, planar cell polarity signaling acts via RhoGTPases to control NCC protrusions and migration direction.
Copyright © 2010 Elsevier Ltd. All rights reserved.