Histidine 103 in Fra2 is an iron-sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast

J Biol Chem. 2011 Jan 7;286(1):867-76. doi: 10.1074/jbc.M110.184176. Epub 2010 Oct 26.

Abstract

The BolA homologue Fra2 and the cytosolic monothiol glutaredoxins Grx3 and Grx4 together play a key role in regulating iron homeostasis in Saccharomyces cerevisiae. Genetic studies indicate that Grx3/4 and Fra2 regulate activity of the iron-responsive transcription factors Aft1 and Aft2 in response to mitochondrial Fe-S cluster biosynthesis. We have previously shown that Fra2 and Grx3/4 form a [2Fe-2S](2+)-bridged heterodimeric complex with iron ligands provided by the active site cysteine of Grx3/4, glutathione, and a histidine residue. To further characterize this unusual Fe-S-binding complex, site-directed mutagenesis was used to identify specific residues in Fra2 that influence Fe-S cluster binding and regulation of Aft1 activity in vivo. Here, we present spectroscopic evidence that His-103 in Fra2 is an Fe-S cluster ligand in the Fra2-Grx3 complex. Replacement of this residue does not abolish Fe-S cluster binding, but it does lead to a change in cluster coordination and destabilization of the [2Fe-2S] cluster. In vivo genetic studies further confirm that Fra2 His-103 is critical for control of Aft1 activity in response to the cellular iron status. Using CD spectroscopy, we find that ∼1 mol eq of apo-Fra2 binds tightly to the [2Fe-2S] Grx3 homodimer to form the [2Fe-2S] Fra2-Grx3 heterodimer, suggesting a mechanism for formation of the [2Fe-2S] Fra2-Grx3 heterodimer in vivo. Taken together, these results demonstrate that the histidine coordination and stability of the [2Fe-2S] cluster in the Fra2-Grx3 complex are essential for iron regulation in yeast.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Apoproteins / chemistry
  • Apoproteins / genetics
  • Apoproteins / metabolism
  • Histidine*
  • Humans
  • Intracellular Signaling Peptides and Proteins / chemistry
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Iron / metabolism*
  • Ligands
  • Mice
  • Molecular Sequence Data
  • Mutagenesis
  • Mutation
  • Oxidoreductases / chemistry
  • Oxidoreductases / metabolism*
  • Protein Multimerization
  • Protein Stability
  • Protein Structure, Quaternary
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Signal Transduction*
  • Spectrum Analysis
  • Sulfur / metabolism*
  • Transcription Factors / metabolism

Substances

  • AFT1 protein, S cerevisiae
  • Apoproteins
  • FRA2 protein, S cerevisiae
  • Intracellular Signaling Peptides and Proteins
  • Ligands
  • Saccharomyces cerevisiae Proteins
  • Transcription Factors
  • Histidine
  • Sulfur
  • Iron
  • Grx3 protein, S cerevisiae
  • Oxidoreductases