Solid-state (15)N CPMAS NMR and computational analysis of ligand hapticity in rhodium(η-diene) poly(pyrazolyl)borate complexes

Inorg Chem. 2010 Dec 6;49(23):11205-15. doi: 10.1021/ic101830e. Epub 2010 Oct 27.

Abstract

Novel [Rh(η-diene)Tp(x)] complexes of sterically encumbered Tp(x) ligands (Tp(x) = Tp(4Bo), diene = cod, 1; nbd, 2; Tp(x) = Tp(4Bo,5Me), diene = cod, 3; nbd, 4; Tp(x) = Tp(a,3Me), diene = cod, 5; nbd, 6; Tp(x) = Tp(a*,3Me), diene = cod, 7; nbd, 8) have been prepared by treatment of [Rh(η-diene)(μ-Cl)](2) with TlTp(x) (Tp(x) in general, in detail: Tp(4Bo) = hydrotris(indazol-1-yl)borate, Tp(4Bo,5Me) = hydrotris(5-methyl-indazol-1-yl)borate, Tp(a,3Me) = hydrotris(3-methyl-2H-benz[g]-4,5-dihydroindazol-2-y1)borate, Tp(a*,3Me) = hydrotris(3-methyl-2H-benz[g]indazol-2-yl)borate), and characterized by analytical and spectral data (IR, (1)H, (11)B, and (13)C NMR solution). The structures adopted by [Rh(nbd)Tp(4Bo)] 2, [Rh(cod)Tp(4Bo,5Me)] 3, [Rh(nbd)Tp(a,3Me)] 6, [Rh(nbd)Tp(a*,3Me)] 8, and [Rh(nbd)Tp(a*,3Me*)] 8* (incorporating a borotropomeric ligand), have been investigated. Low steric hindrance between the ligands in 2 and 3 permits κ(3) coordination of the pyrazolylborate while the high steric encumbrance present in 6, 8, and 8* results in κ(2) ligands. The coordination modes of the ligands to the metal have also been established by (15)N CPMAS studies of selected ligands and their corresponding Rh complexes. These spectroscopic data are in agreement with the (15)N chemical shifts obtained by using quantum-chemical methods to assist reliable assignments of the experimental values, affording new insights into the extraction of structural information concerning the hapticity (κ(2) or κ(3)) of the poly(pyrazolyl)borate ligands to the Rh metal.

MeSH terms

  • Alkadienes / chemistry*
  • Borates / chemistry*
  • Computer Simulation
  • Crystallography, X-Ray
  • Ligands
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Structure
  • Pyrazoles / chemistry*
  • Quantum Theory
  • Rhodium / chemistry*

Substances

  • Alkadienes
  • Borates
  • Ligands
  • Pyrazoles
  • Rhodium