This study attempted to use collagen-Matrigel as extracellular matrix (ECM) to supply cells with three-dimensional (3D) culture condition and employ alginate-poly-l-lysine-alginate (APA) microcapsules to control the formation of alveolus-like structure in vitro. We tested mice foetal pulmonary cells (FPCs) by immunohistochemistry after 2D culture. The alveolus-like structure was reconstructed by seeding FPCs in collagen-Matrigel mixed with APA microcapsules 1.5 ml. A self-made mould was used to keep the structure from contraction. Meanwhile, it provided static stretch to the structure. After 7, 14 and 21 days of culture, the alveolus-like structure was analysed histologically and immunohistochemically, or by scanning transmission electron microscopy (TEM). We also observed these structures under inverted phase contrast microscope. The expression of pro-surfactant protein C (SpC) was detected by reverse transcription-polymerase chain reaction (RT-PCR). We obtained fibroblasts, epithelial cells and alveolar type II (AE2) cells in FPCs. In the reconstructed structure, seeding cells surrounding the APA microcapsules constructed alveolus-like structures, the size of them ranges from 200 to 300 μm. In each reconstructed lung tissue sheet, microcapsules had integrity. Pan-cytokeratin, vimentin and SpC positive cells were observed in 7- and 14-day cultured structures. TEM showed lamellar bodies of AE2 cells in the reconstructed tissues whereas RT-PCR expressed SpC gene. Primary mice FPCs could form alveolus-like structures in collagen-Matrigel/APA microcapsules engineered scaffolds, which could maintain a differentiated state of AE2 cells.
© 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.