In this study, we determined vt subtypes and evaluated verotoxicity in basal as well as induced conditions of verotoxin-producing Escherichia coli (VTEC) strains isolated from cattle and meat products. Most (87%) of the 186 isolates carried a vt(2) gene. Moreover, the vt(2) subtype, which is associated with serious disease, was present in 42% of our VTEC collection. The other vt subtypes detected were vt(1), vt(1d), vt(2vha), vt(2vhb), vt(2O118), vt(2d) (mucus activatable), and vt(2g). A total of 41 (22%) of the isolates possessed more than one vt subtype in its genome, and among them the most frequent combination was vt(1)/vt(2), but we also observed multiple combinations among vt(2) subtypes. Differences in verotoxicity titers were found among a selection of 54 isolates. Among isolates with a single vt(2) variant, those carrying the vt(2) subtype had high titers under both uninduced and induced conditions. However, the highest increase in cytotoxicity under mitomycin C treatment was detected among the strains carrying vt(2vha) or vt(2hb) variants. Notably, the isolates carrying the vt(1) subtype showed a lesser increase than that of most of the vt(2)-positive VTEC strains. Furthermore, the presence of more than one vt gene variant in the same isolate was not reflected in higher titers, and generally the titers were lower than those for strains with only one gene variant. The main observation was that both basal and induced cytotoxic effects seemed to be associated with the type and number of vt variants more than with the serotype or origin of the isolate.