It has been reported that the stimulation of neutrophils with N-formyl-Met-Leu-Phe (fMLF), an agonist for formyl peptide receptor (Fpr) 1, renders cells unresponsive to other chemoattractants in vitro. This is known as cross-desensitization, but its functional relevance in neutrophil migration in vivo has not been investigated. Here, we show that precedent stimulation of mouse neutrophils with compound 43, a non-peptidyl agonist for mouse Fpr1 and Fpr2, rendered the cells unresponsive to a second stimulation with C5a, leukotriene B₄, or keratinocyte-derived cytokine (KC) in calcium mobilization and chemotaxis assays in vitro. The expression of chemokine (C-X-C motif) receptor 2 (CXCR2) on the surface of neutrophils was concomitantly diminished by stimulating the cells with the compound. Moreover, oral administration of the compound to mice before they were exposed to lipopolysaccharide (LPS) aerosol resulted in a dose-dependent reduction in the neutrophil count in bronchoalveolar lavage fluid. The expression of CXCR2 on blood neutrophils was also reduced in the compound-administered mice. The recipient mice that underwent adoptive transfer of fluorescence-labelled neutrophils that had been incubated with the compound showed a substantial decrease in neutrophil counts in bronchoalveolar lavage fluid after they were exposed to LPS, when compared with the control mice to which vehicle-treated neutrophils had been transferred. These results are consistent with the idea that the agonist for Fpr1 and Fpr2 induced cross-desensitization in neutrophils and attenuated neutrophil migration into the airways. Our results also revealed the unpredicted effect of an Fpr1 and Fpr2 dual agonist, which may act as a functional antagonist for multiple chemoattractant receptors in vivo.
© 2010 The Authors. Immunology © 2010 Blackwell Publishing Ltd.