Reactivity of methacrylates in insertion polymerization

J Am Chem Soc. 2010 Nov 24;132(46):16623-30. doi: 10.1021/ja107538r. Epub 2010 Nov 2.

Abstract

Polymerization of ethylene by complexes [{(P^O)PdMe(L)}] (P^O = κ(2)-(P,O)-2-(2-MeOC(6)H(4))(2)PC(6)H(4)SO(3))) affords homopolyethylene free of any methyl methacrylate (MMA)-derived units, even in the presence of substantial concentrations of MMA. In stoichiometric studies, reactive {(P^O)Pd(Me)L} fragments generated by halide abstraction from [({(P^O)Pd(Me)Cl}μ-Na)(2)] insert MMA in a 1,2- as well as 2,1-mode. The 1,2-insertion product forms a stable five-membered chelate by coordination of the carbonyl group. Thermodynamic parameters for MMA insertion are ΔH(++) = 69.0(3.1) kJ mol(-1) and ΔS(++) = -103(10) J mol(-1) K(-1) (total average for 1,2- and 2,1-insertion), in comparison to ΔH(++) = 48.5(3.0) kJ mol(-1) and ΔS(++) = -138(7) J mol(-1) K(-1) for methyl acrylate (MA) insertion. These data agree with an observed at least 10(2)-fold preference for MA incorporation vs MMA incorporation (not detected) under polymerization conditions. Copolymerization of ethylene with a bifunctional acrylate-methacrylate monomer yields linear polyethylenes with intact methacrylate substituents. Post-polymerization modification of the latter was exemplified by free-radical thiol addition and by cross-metathesis.