The differentiated state of somatic cells is highly stable, but it can be experimentally reversed. The resulting cells can then be redirected into many different pathways. Nuclear reprogramming has been achieved by nuclear transfer to eggs, cell fusion, and overexpression of transcription factors. The mechanisms of nuclear reprogramming are not understood, but some insight into them is provided by comparing the efficiencies of different reprogramming strategies. Here, we compare these efficiencies by describing the frequency and rapidity with which reprogramming is induced and by the proportion of cells and level of expression in which reprogramming is achieved. We comment on the mechanisms that lead to successful somatic-cell reprogramming and on those that resist in helping to maintain the differentiated state of somatic cells.