SUN: Top-down saliency using natural statistics

Vis cogn. 2009 Aug 1;17(6-7):979-1003. doi: 10.1080/13506280902771138.

Abstract

When people try to find particular objects in natural scenes they make extensive use of knowledge about how and where objects tend to appear in a scene. Although many forms of such "top-down" knowledge have been incorporated into saliency map models of visual search, surprisingly, the role of object appearance has been infrequently investigated. Here we present an appearance-based saliency model derived in a Bayesian framework. We compare our approach with both bottom-up saliency algorithms as well as the state-of-the-art Contextual Guidance model of Torralba et al. (2006) at predicting human fixations. Although both top-down approaches use very different types of information, they achieve similar performance; each substantially better than the purely bottom-up models. Our experiments reveal that a simple model of object appearance can predict human fixations quite well, even making the same mistakes as people.