Configuration of the 5'-methyl group modulates the biophysical and biological properties of locked nucleic acid (LNA) oligonucleotides

J Med Chem. 2010 Dec 9;53(23):8309-18. doi: 10.1021/jm101207e. Epub 2010 Nov 8.

Abstract

As part of a program aimed at exploring the structure- activity relationships of 2',4'-bridged nucleic acid (BNA) containing antisense oligonucleotides (ASOs), we report the synthesis and biophysical and biological properties of R- and S-5'-Me LNA modified oligonucleotides. We show that introduction of a methyl group in the (S) configuration at the 5'-position is compatible with the high affinity recognition of complementary nucleic acids observed with LNA. In contrast, introduction of a methyl group in the (R) configuration reversed the stabilization effect of LNA. NMR studies indicated that the R-5'-Me group changes the orientation around torsion angle γ from the +sc to the ap range at the nucleoside level, and this may in part be responsible for the poor hybridization behavior exhibited by this modification. In animal experiments, S-5'-Me-LNA modified gapmer antisense olignucleotides showed slightly reduced potency relative to the sequence matched LNA ASOs while improving the therapeutic profile.

MeSH terms

  • Biophysics
  • Nuclear Magnetic Resonance, Biomolecular
  • Oligonucleotides / chemistry
  • Oligonucleotides / pharmacology*
  • Structure-Activity Relationship

Substances

  • Oligonucleotides
  • locked nucleic acid