We have analyzed alternatively spliced beta amyloid protein precursor (beta APP) mRNAs by using the polymerase chain reaction to amplify beta APP cDNAs produced by reverse transcription. With this approach the three previously characterized beta APP mRNAs (beta APP695, beta APP751, and beta APP770) are readily detected and compared in RNA samples extracted from specimens as small as a single cryostat section. We show that the results obtained with this method are not affected by partial RNA degradation and use it to identify a novel alternatively spliced beta APP714 mRNA that is present at low abundance in each of the many human brain regions, peripheral tissues, and cell lines that we have examined; demonstrate that nonneuronal cells in the adult human brain and meninges produce appreciable beta APP695, beta APP751, and beta APP770 mRNA; and identify changes in beta APP gene expression in the AD brain and meninges that may contribute to amyloid deposition.