Both PM(2.5) and TSP were monitored in the spring from 2006 to 2008 in an intensive ground monitoring network of five sites (Tazhong, Yulin, Duolun, Beijing, and Shanghai) along the pathway of Asian dust storm across China to investigate the mixing of dust with pollution on the pathway of the long-range transport of Asian dust. Mineral was found to be the most loading component of aerosols both in dust event days and non-dust days. The concentrations of those pollution elements, As, Cd, Pb, Zn, and S in aerosol were much higher than their mean abundances in the crust even in dust event days. The high concentration of SO(4)(2-) could be from both sources: one from the transformation of the local emitted SO(2) and the other from the sulfate that existed in primary dust, which was transported to Yulin. Na(+), Ca(2+), and Mg(2+) were mainly from the crustal source, while NO(3)(-) and NH(4)(+) were from the local pollution sources. The mixing of dust with pollution aerosol over Yulin in dust event day was found to be ubiquitous, and the mixing extent could be expressed by the ratio of NO(3)(-)/Al in dust aerosol. The ratio of Ca/Al was used as a tracer to study the dust source. The comparison of the ratios of Ca/Al together with back trajectory analysis indicated that the sources of the dust aerosol that invaded Yulin could be from the northwestern desert in China and Mongolia Gobi.
Copyright © 2010 Elsevier B.V. All rights reserved.