Preeclampsia is a major obstetrical complication affecting maternal and fetal health. While it is clear that there is a substantial placental contribution to preeclampsia pathogenesis, the maternal contribution is less well characterized. We therefore performed a genome-wide transcriptome analysis to explore disease-associated changes in maternal gene expression patterns in peripheral blood mononuclear cells (PBMCs).
Methods: Preeclampsia was defined as gestational hypertension, proteinuria and hyperurecimia. Total RNA was isolated from PBMCs obtained from women with uncomplicated pregnancies (n = 5) and women with preeclamptic pregnancies (n = 5). Gene expression analysis was carried out using Agilent oligonucleotide microarrays. Biological pathway analysis was undertaken using Ingenuity Pathway Analysis software. Quantitative real-time PCR (QRTPCR) was performed to validate the gene expression changes of selected genes in normotensive and preeclamptic patients (n = 12 each).
Results: We identified a total of 368 genes that were differentially expressed in women with preeclampsia compared to normal controls with false discovery rate (FDR) controlled at 10%. In follow up experiments we further analyzed the expression levels of a number of genes that were identified as altered by the microarray data including survivin (BIRC5), caveolin (CAV1), GATA binding protein-1 (GATA1), signal tranducer and activator of transcription 1 (STAT1), E2F transcription factor-1 (E2F1), fibronectin-1 (FN1), interleukin-4 (IL-4), matrix metalloprotease-9 (MMP-9) and WAP four disulfide domain protein (WFDC-1) by QRTPCR. Additionally we performed immuno blot analysis and zymography to verify some of these candidate genes at the protein level. Computational analysis of gene function identified an anti-proliferative and altered immune function cellular phenotype in severe preeclamptic samples.
Conclusions: We have characterized the genome-wide mRNA expression changes associated with preeclampsia-specific genes in circulating maternal blood cells at the time of delivery. In addition to providing information relating to the biological basis of the preeclampsia phenotype, our data provide a number of potential biomarkers for use in the further characterization of this disease.
Copyright © 2010 Elsevier Ltd. All rights reserved.