Structural remodelling occurring before, due to the underlying heart disease, and during atrial fibrillation (AF) sets the stage for permanent AF. Current therapy in AF aims to maintain sinus rhythm in symptomatic patients, but outcome is unfortunately poor. Stretch of the atria is a main contributor to atrial remodelling. In this review, we describe different aspects of structural remodelling as seen in animal models and in patients with AF, including atrial enlargement, cellular hypertrophy, dedifferentiation, fibrosis, apoptosis, and loss of contractile elements. In the second part, we describe downstream signals of mechanical stretch and their contribution to AF and structural remodelling. Ultimately, knowledge of mechanisms underlying structural remodelling may help to identify new pharmacological targets for AF prevention.