We consider growth of nanoclusters and nanopillars in a model of surface deposition and restructuring yielding morphologies of interest in designing catalysis applications. Kinetic Monte Carlo numerical modeling yields examples of the emergence of face centered cubic (fcc) symmetry surface features in Pt-type metal nanostructures, allowing evaluation of the fraction of the resulting active sites with desirable properties, such as (111)-like coordination, as well as suggesting the optimal growth regimes.
© 2011 American Chemical Society