Changes in the concentration and spatial distribution of Ca(2+) ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca(2+) dyes that allow direct visualization of Ca(2+) transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca(2+) transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca(2+) signals are associated with different phases of the cell cycle and interfering with Ca(2+) signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca(2+) signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca(2+) and other signaling modules, it is difficult to assess the exact role of Ca(2+) signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca(2+) signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca(2+) regulates entry into the cell cycle through the induction of gene transcription.
Copyright © 2010 Elsevier Ltd. All rights reserved.