Protein oxidative damage lies behind skin and hair degradation and the deterioration of protein-based products, such as wool and meat, in addition to a range of serious health problems. Effective strategies to ameliorate degenerative processes require detailed fundamental knowledge of the chemistry at the molecular level, including specific residue-level products and their relative abundance. This paper presents a new means of tracking damage-induced side-chain modification in peptides using a novel application for isobaric label quantification. Following exposure to heat and UVA and UVB irradiation, tryptophan and tyrosine damage products in synthetic peptides were characterized and tracked using ESI-MS/MS and iTRAQ labeling-based relative quantification. An in-depth degradation profile of these peptides was generated, enabling the formation of even low-abundance single-residue-level modifications to be sensitively monitored. The development of this novel approach to profiling and tracking residue-level protein damage offers significant potential for application in the development and validation of protein protection treatments.