The SNO-proteome: causation and classifications

Curr Opin Chem Biol. 2011 Feb;15(1):129-36. doi: 10.1016/j.cbpa.2010.10.012. Epub 2010 Nov 17.

Abstract

Cell signaling is a complex and highly regulated process. Post-translational modifications of proteins serve to sense and transduce cellular signals in a precisely coordinated manner. It is increasingly recognized that protein S-nitrosylation, the addition of a nitric oxide group to cysteine thiols, serves an important role in a wide range of signaling pathways. In spite of the large number of SNO-proteins now identified (∼1000), the observed specificity of S-nitrosylation in terms of target proteins and specific cysteines within modified proteins is incompletely understood. Here we review the progress made in S-nitrosylation detection methods that have facilitated the study of the SNO-proteome under physiological and pathophysiological conditions, and some factors important in determining the SNO-proteome. Classification schemes for emergent denitrosylases and prospective 'protein S-nitrosylases' are provided.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Humans
  • Nitric Oxide / analysis*
  • Nitrosation
  • Proteome / chemistry*
  • Proteomics
  • Substrate Specificity

Substances

  • Proteome
  • Nitric Oxide