Lesion-induced thermodynamic destabilization is believed to facilitate β-hairpin intrusion by the human XPC/hHR23B nucleotide excision repair (NER) recognition factor, accompanied by partner-base flipping, as suggested by the crystal structure of the yeast orthologue (Min, J. H., and Pavletich, N. P. (2007) Nature 449, 570-575). To investigate this proposed mechanism, we employed the umbrella sampling method to compute partner base flipping free energies for the repair susceptible 14R (+)-trans-anti-DB[a,l]P-N(2)-dG modified duplex 11-mer, derived from the fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene, and for the undamaged duplex. Our flipping free energy profiles show that the adduct has a lower flipping barrier by ∼7.7 kcal/mol, consistent with its thermally destabilizing impact on the damaged DNA duplex and its susceptibility to NER.