Early variations in plasmodium falciparum dynamics in Nigerian children after treatment with two artemisinin-based combinations: implications on delayed parasite clearance

Malar J. 2010 Nov 22:9:335. doi: 10.1186/1475-2875-9-335.

Abstract

Background: Combination treatments, preferably containing an artemisinin derivative, are recommended to improve efficacy and prevent Plasmodium falciparum drug resistance. Artemether-lumefantrine (AL) and artesunate-amodiaquine (AA) are efficacious regimens that have been widely adopted in sub-Saharan Africa. However, most study designs ignore the effects of these regimens on peripheral parasitaemia in the first 24 hours of therapy. The study protocol was designed to evaluate more closely the early effects and the standard measures of efficacies of these two regimens.

Methods: In an open label, randomized controlled clinical trial, children aged 12 months to 132 months were randomized to receive AL (5-14 kg, one tablet; 15-24 kg, two tablets and 25-34 kg, three tablets twice daily) or artesunate (4 mg/kg daily) plus amodiaquine (10 mg/kg daily) for three days. Peripheral blood smears were made hourly in the first 4 hours, 8 h, 16 h, 24 h, and daily on days 2-7, and on days 7, 14, 21, 28, 35, and 42 for microscopic identification and quantification of Plasmodium falciparum.

Results: A total of 193 children were randomized to receive either AL (97) or AA (96). In children that received both medications, early response of peripheral parasitaemia showed that 42% of children who received AL and 36.7% of those who received AA had an immediate rise in peripheral parasitaemia (0-4 h after treatment) followed by a rapid fall. The rise in parasitaemia was significant and seems to suggest a mobilization of asexual parasites from the deep tissues to the periphery. Days 3, 7, 14, 28, and 42 cure rates in the per protocol (PP) population were > 90% in both groups of children. Both drug combinations were well tolerated with minimal side effects.

Conclusion: The study showed the high efficacy of AL and AA in Nigerian children. In addition the study demonstrated the mobilisation of asexual parasites from the deep to the periphery in the early hours of commencing ACT treatment in a subset of patients in both study groups. It is unclear whether the early parasite dynamics discovered in this study play any role in the development of drug resistance and thus it is important to further evaluate this discovery. It may be useful for studies investigating delay in parasite clearance of artemisinin derivatives as a way of monitoring the development of resistance to artemisinin to assess the early effects of the drugs on the parasites.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amodiaquine / administration & dosage*
  • Antimalarials / administration & dosage*
  • Artemether, Lumefantrine Drug Combination
  • Artemisinins / administration & dosage*
  • Blood / parasitology
  • Child
  • Child, Preschool
  • Drug Combinations
  • Ethanolamines / administration & dosage*
  • Female
  • Fluorenes / administration & dosage*
  • Humans
  • Infant
  • Malaria, Falciparum / drug therapy*
  • Malaria, Falciparum / parasitology*
  • Male
  • Nigeria
  • Parasitemia*
  • Plasmodium falciparum / isolation & purification*
  • Time Factors

Substances

  • Antimalarials
  • Artemether, Lumefantrine Drug Combination
  • Artemisinins
  • Drug Combinations
  • Ethanolamines
  • Fluorenes
  • amodiaquine, artesunate drug combination
  • Amodiaquine