Retinal fundus image is an important modality to document the health of the retina and is widely used to diagnose ocular diseases such as glaucoma, diabetic retinopathy and age-related macular degeneration. However, the enormous amount of retinal data obtained nowadays mostly stored locally; and the valuable embedded clinical knowledge is not efficiently exploited. In this paper we present an online depository, ORIGA(-light), which aims to share clinical groundtruth retinal images with the public; provide open access for researchers to benchmark their computer-aided segmentation algorithms. An in-house image segmentation and grading tool is developed to facilitate the construction of ORIGA(-light). A quantified objective benchmarking method is proposed, focusing on optic disc and cup segmentation and Cup-to-Disc Ratio (CDR). Currently, ORIGA(-light) contains 650 retinal images annotated by trained professionals from Singapore Eye Research Institute. A wide collection of image signs, critical for glaucoma diagnosis, are annotated. We will update the system continuously with more clinical ground-truth images. ORIGA(-light) is available for online access upon request.