Validation through accuracy prediction in neuroimage registration

Annu Int Conf IEEE Eng Med Biol Soc. 2010:2010:6284-7. doi: 10.1109/IEMBS.2010.5628082.

Abstract

Validation and accuracy assessment are the main bottlenecks preventing the adoption of many medical image processing algorithms in the clinical practice. In the classical approach, a-posteriori analysis is performed based on some predefined objective metrics. The main limitation of this methodology is in the fact that it does not provide a mean to estimate what the performance would be a-priori, and thus to shape the processing workflow in the most suitable way. In this paper, we propose a different approach based on Petri Nets. The basic idea consists in predicting the accuracy that will result from a given processing on a given type of data based on the identification and characterization of the sources of inaccuracy intervening along the whole chain. Here we propose a proof of concept in the specific case of image registration. A Petri Net is constructed after the detection of the possible sources of inaccuracy and the evaluation of their respective impact on the estimation of the deformation field. A training set of five different synthetic volumes is used. Afterward, validation is performed on a different set of five synthetic volumes by comparing the estimated inaccuracy with the posterior measurements according to a set of predefined metrics. Two real cases are also considered. Results show that the proposed model provides a good prediction performance. An extended set of clinical data will allow the complete characterization of the system for the considered task.

MeSH terms

  • Algorithms
  • Humans
  • Image Processing, Computer-Assisted / methods*