Background and purpose: For the past few years, in an attempt to find new sources of cells that may be used in cell therapy, numerous researchers have highlighted the particular properties of mesenchymal stem cells. Mesenchymal stem cells can be isolated from adult tissues such as the bone marrow or adipose tissue, but also from other organs such as the human placenta. Our study focuses adult stem cells isolated from the chorionic villi in an attempt to differentiate them into islets of Langerhans in order to study their differentiation potential, as a future background for cell therapy.
Experimental design: Full-term placentas were prelevated from volunteer women that have just delivered a normal pregnancy. After a mechanical fragmentation of the placenta, the chorion fragments are transferred in a dish with dispase before the enzyme is inactivated using fetal calf serum. The cell suspension is filtered in order to obtain a single-cell suspension. After the adherence of the first cells, the proliferation rate increased progressively and cell morphology is kept the same for several passages. In order to correctly differentiate placental stem cells into glucagon-secreting cells, we used a culture method on a scaffold with sequential exposure to different growth factors. The underlying substrate used contained type IV collagen, chytosan, Matrigel and laminin. Molecular biology techniques were carried out to investigate the gene expression of the stem cells.
Results: Our results show that exendin-4 is able to induce the differentiation of placental stem cells into glucagon-secreting cells. We also notice the absence of the insulin gene, a conclusion that may be explained by the fact that our phenotype is a partial one, incomplete, closer to islet cell progenitors than to insulin-producing progenitors.
Conclusions: The identification of the placenta as a valid source for stem cells has important practical advantages because it is easily accessible, it raises no ethical issues and cells are easily to isolate in a large enough number to use. The future knowledge and manipulation of the signaling pathways that determines the dramatic phenotype shift may provide the basis for efficient cell differentiation, with great impact on regenerative medicine and tissue engineering.