The formation of the Golgi ribbon takes place in protists and metazoans. It is especially prominent in mammalian cells during interphase. Golgi ribbon formation represents an orchestrated sequence of events based not only on different molecular mechanisms but also on discrete cellular functions. Mechanisms responsible for the generation of the Golgi ribbon include Golgi centralization, cis- and trans-Golgins, molecular machines responsible for the fusion of cargo domains with cisternal rims, and several other less studied factors. Here, we substantiate the hypothesis that cis-Golgins function mostly not as tethering factors, but are responsible for the attachment of the cis-most cisternae to the medial Golgi stacks, whereas trans-Golgins are responsible for the attachment of the trans-most cisterna to the medial Golgi stacks. This hypothesis is tested analyzing predictions derived from it and related to molecular mechanisms responsible for mitotic fragmentation of Golgi stacks.