Well-differentiated/de-differentiated liposarcomas (WDLS/DDLS) encompass an intriguing disease model in which a temporal intersection occurs between the malignant transformation of mesenchymal cells and the process of adipogenesis. Deciphering the molecular events that trigger and are characteristic of the intersection of these oncogenic and normal processes is critical to affect the often morbid and lethal consequences of malignant tumors of fat. High-resolution genome-wide oligonucleotide array-based comparative genomic hybridization (aCGH) with matched gene expression analyses was performed on seven lipomas, one hibernoma, and 38 WD and DDLS to define and compare the genomic events associated with these tumors. WD and DDLS had complex karyotypes. On average, WDLS had 11.1 and DDLS had 22.7 chromosomal copy number aberrations. All of the liposarcomas had 12q13-q15 amplifications with varying peaks at CDK4 (12q14.1), HMGA2 (12q14.3), and MDM2 (12q15); 24% of the DDLS and no WDLS had 1p32.2 (JUN) amplifications; 33% WDLS and 35% DDLS had 1q24.3 amplifications involving DNM3 and miR-214/miR-199a2; 24% of the liposarcomas had 6q23-q24 amplifications (including MAP3K5). Amplifications in GLI1 (12q13.3), JUN, and MAP3K5 (6q23.3) were mutually exclusive and occurred predominately in the DDLS. 6q amplifications occurred primarily in retroperitoneal tumors and females represented the majority of those patients who developed fatty tumors prior to the age of 50 years old. This detailed genetic mapping provides insight into the heterogeneity of WD and DDLS and the chromosomal and genetic abnormalities that are present in and distinguish these mesenchymal malignancies.
© 2010 Wiley-Liss, Inc.